# Verifying thermocoupled ice sheet models (and explaining the "warm spokes")

Ed Bueler, 1 Jed Brown, 2 and Craig Lingle 2

 $^1\mathrm{Department}$  of Mathematics and Statistics, University of Alaska, Fairbanks  $^2\mathrm{Geophysical}$  Institute, University of Alaska, Fairbanks

29 September, 2006 (WAIS)





#### Outline

The context

The problem

The new tools, and how to use them

The problem again, but in better focus

The future





#### Outline

#### The context

The problem

The new tools, and how to use then

The problem again, but in better focus

The future





# SIA flow versus "dragging ice shelves"

#### central fact for Shallow Ice Approximation = SIA:

The context

Velocities are determined locally and depend on depth. Only horizontal plane shear stresses are included. h is surface elevation:

$$\langle \sigma_{xz}, \sigma_{yz} \rangle = \rho g(h-z) \nabla h$$

#### MacAyeal (1989) equations for ice streams:

Velocity is determined globally and is depth-independent. Stress balance includes only longitudinal and vertical plane shear stresses:

$$[2\nu H(2u_x + v_y)]_x + [\nu H(u_y + v_x)]_y - \rho g H h_x = \beta u$$
$$[2\nu H(2v_y + u_x)]_y + [\nu H(u_y + v_x)]_x - \rho g H h_y = \beta v$$

(effective viscosity  $\nu$  depends on strain rates and temperature; H is thickness;  $\beta$  is basal drag)



## Antarctic sheet model with "mask" for flow type

- some equations apply everywhere (mass continuity and conservation of energy)
- but different areas get different computations of velocity; idea first successfully used in 3D Antarctic model by Ritz et al (2001)
- the whole model is still shallow; this is not the full Stokes' system
- blue: shallow ice approximation (SIA) computes velocity
- green: MacAyeal (1989) equations for dragging ice shelves compute velocity
- red: if there is ice, MacAyeal-Morland shelf equations compute velocity





#### But what is the status of these "ice streams"?



(Payne & Dongelmans 1997)

These "ice streams", a.k.a. "spokes", are fast flows of warm ice in the thermocoupled SIA itself on a non-sliding bed.





## Outline

The context

#### The problem

The new tools, and how to use then

The problem again, but in better focus

The future





## Everyone has the disease



F for each model in the intercomparison.

- these are basal temperature contour maps
- these spokes (in EISMINT II experiments) should not appear because they are numerical solutions to an angularly-symmetric continuum problem





## Everyone has the disease



Fig. 3. Predicted steady-state basal temperatures in experiment F for each model in the intercomparison.

- these are basal temperature contour maps
- these spokes (in EISMINT II experiments) should not appear because they are numerical solutions to an angularly-symmetric continuum problem
- Are they numerical errors?
  Yes!





## Everyone has the disease



Fig. 3. Predicted steady-state basal temperatures in experiment F for each model in the intercomparison.

- these are basal temperature contour maps
- these spokes (in EISMINT II experiments) should not appear because they are numerical solutions to an angularly-symmetric continuum problem
- Are they numerical errors?
  Yes!
- Are they just numerical errors? No. They are telling us something important about the continuum problem.



## "Everyone" includes our group!

#### Yes, we get spokes when we run EISMINT II experiment F:



(grey=at pressure-melting temperature; 2K contour interval)





#### Moreover, who can trust ice sheet modelers?

| Group | Volume<br>$10^6  \mathrm{km}^3$ | Area $10^6  \mathrm{km}^2$ | Melt<br>fraction | Divide<br>thickness<br>m | Divide basal<br>temperature<br>K |
|-------|---------------------------------|----------------------------|------------------|--------------------------|----------------------------------|
|       |                                 |                            |                  |                          |                                  |
| Y     | 2.157                           | 1.031                      | 0.779            | 3664.710                 | 256.985                          |
| X     | 2.202                           | 1.011                      | 0.700            | 3706.200                 | 256.260                          |
| W     | 2.111                           | 1.031                      | 0.587            | 3740.740                 | 255.415                          |
| V     | 2.068                           | 1.031                      | 0.699            | 3672.400                 | 254.470                          |
| U     | 2.205                           | 1.016                      | 0.780            | 3681.108                 | 255.419                          |
| T     | 2.147                           | 1.031                      | 0.779            | 3676.370                 | 257.089                          |
| S     | 2.060                           | 1.031                      | 0.632            | 3685.910                 | 254.750                          |
| R     | 2.118                           | 1.097                      | 0.877            | 3717.530                 | 254.160                          |
| Q     | 2.080                           | 1.031                      | 0.679            | 3694.450                 | 255.067                          |
| Mean  | 2.128                           | 1.034                      | 0.718            | 3688.342                 | 255.605                          |
| Range | 0.145                           | 0.086                      | 0.290            | 96.740                   | 2.929                            |

 note wide range of results in "easy" experiment A

(table from EISMINT II = Payne et al 2000)





#### Moreover, who can trust ice sheet modelers?

| Group | $Volume$ $10^6  \mathrm{km}^3$ | Area $10^6  \mathrm{km}^2$ | Melt<br>fraction | Divide<br>thickness<br>m | Divide basan<br>temperature<br>K |
|-------|--------------------------------|----------------------------|------------------|--------------------------|----------------------------------|
|       |                                |                            |                  |                          |                                  |
| Y     | 2.157                          | 1.031                      | 0.779            | 3664.710                 | 256.985                          |
| X     | 2.202                          | 1.011                      | 0.700            | 3706.200                 | 256.260                          |
| W     | 2.111                          | 1.031                      | 0.587            | 3740.740                 | 255.415                          |
| V     | 2.068                          | 1.031                      | 0.699            | 3672.400                 | 254.470                          |
| U     | 2.205                          | 1.016                      | 0.780            | 3681.108                 | 255.419                          |
| T     | 2.147                          | 1.031                      | 0.779            | 3676.370                 | 257.089                          |
| S     | 2.060                          | 1.031                      | 0.632            | 3685.910                 | 254.750                          |
| R     | 2.118                          | 1.097                      | 0.877            | 3717.530                 | 254.160                          |
| Q     | 2.080                          | 1.031                      | 0.679            | 3694.450                 | 255.067                          |
| Mean  | 2.128                          | 1.034                      | 0.718            | 3688.342                 | 255.605                          |
| Range | 0.145                          | 0.086                      | 0.290            | 96.740                   | 2.929                            |

- note wide range of results in "easy" experiment A
- what is a reliable way to estimate magnitude of numerical errors for a particular numerical model?
- it's not good enough to say "we matched EISMINT" . . .

(table from EISMINT II = Payne et al 2000)





#### Outline

The context

The problem

The new tools, and how to use them

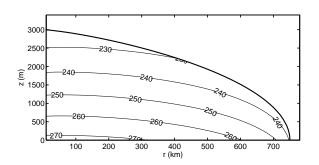
The problem again, but in better focus

The future





## Exact solutions to thermocoupled SIA




 new, simultaneous exact solutions to all equations in the thermocoupled SIA (i.e. mass continuity, flow law, incompressibility, and conservation of energy)





## Exact solutions to thermocoupled SIA



- new, simultaneous exact solutions to all equations in the thermocoupled SIA (i.e. mass continuity, flow law, incompressibility, and conservation of energy)
- no, I won't show you the formulas (codes are online, though)
- circular ice caps like EISMINT





# Exact solutions: how to? (By analogy, anyway)

completely made-up PDE:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + u^2$$

is hard to find any exact solutions

but one can find such for a slightly more general PDE:

$$\frac{\partial u}{\partial t} \stackrel{*}{=} \frac{\partial^2 u}{\partial x^2} + u^2 + f(x, t)$$

• for example, let  $u(x,t) = x^3 + t$ ; compute

$$f = \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} - u^2 = 1 - 6x - (x^3 + t)^2$$

• with this f, equation \* has  $u = x^3 + t$  as solution



# You say "That's not physics!"

• Correct. It is not physical to add a term to the PDE (i.e. your continuum model), and then solve that.





# You say "That's not physics!"

- Correct. It is not physical to add a term to the PDE (i.e. your continuum model), and then solve that.
- In fact, we add a heat source term to the conservation of energy equation in the thermocoupled SIA.
- So our exact solutions are for equations describing *radioactive* ice, more or less.



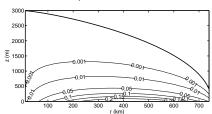


# You say "That's not physics!"

- Correct. It is not physical to add a term to the PDE (i.e. your continuum model), and then solve that.
- In fact, we add a heat source term to the conservation of energy equation in the thermocoupled SIA.
- So our exact solutions are for equations describing radioactive ice, more or less.
- But exact solutions found this way are really useful for:
  - checking correctness of numerical codes
  - getting some scale for achievable/reportable numerical error on a given grid






## More views of exact solutions to thermocoupled SIA



left: exact profile and temperature

left: exact strain-heating

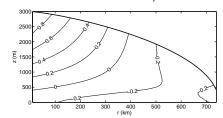
(above: contour labels in K; below: contour labels in  $10^{-3}\,\mathrm{K\,a^{-1}})$ 



right: exact added "radioactive" heating



## More views of exact solutions to thermocoupled SIA






left: exact profile and temperature right: computed EISMINT II experiment F (above: contour labels in K; below: contour labels in  $10^{-3}$  K a<sup>-1</sup>)



left: exact strain-heating



right: exact added "radioactive" heating





#### Verification of numerical schemes for ice flow

- *verification* = solving the equations right
- compare validation = solving the right equations (by comparison to real ice flow data!)





#### Verification of numerical schemes for ice flow

- verification = solving the equations right
- compare *validation* = solving the right equations (by comparison to real ice flow data!)
- "my numerical scheme has been verified" should mean:
  - 1. you know an exact (or very accurate) solution of the full mathematical model
  - 2. your numerical scheme approximates that mathematical model (and does not add additional physical guesses you made in each grid cell)
  - 3. you used the numerical scheme to approximate the exact solution
  - 4. you know how big the error is in that computation
  - 5. you show that the error decreases as the grid is refined





# Convergence under grid refinement

#### Because we know exact solutions to thermocoupled SIA,

- · we know size of actual numerical errors and
- convergence rate under grid refinement can be measured









- you can check for coding errors (they inevitably keep convergence under grid refinement from happening)
- you get some sense of the magnitude of numerical errors





- you can check for coding errors (they inevitably keep convergence under grid refinement from happening)
- you get some sense of the magnitude of numerical errors
- ...and of how much grid refinement might be needed to achieve an objective





- you can check for coding errors (they inevitably keep convergence under grid refinement from happening)
- you get some sense of the magnitude of numerical errors
- ...and of how much grid refinement might be needed to achieve an objective
- you get to see numerical results as predictions of the continuum model, not of the particular numerical scheme





- you can check for coding errors (they inevitably keep convergence under grid refinement from happening)
- you get some sense of the magnitude of numerical errors
- ...and of how much grid refinement might be needed to achieve an objective
- you get to see numerical results as predictions of the continuum model, not of the particular numerical scheme
- the verification process can clarify some mysteries . . .





#### Outline

The context

The problem

The new tools, and how to use ther

The problem again, but in better focus

The future





## An update on the spokes

- we still get spokes after we verify the scheme (for EISMINT II experiment F)
- spokes reflect a sensitivity of the continuum equations to perturbation in some geometry/temperature regimes; compare (Hindmarsh 2004)





# What causes the spokes

careful error analysis of our finite difference scheme for the temperature equation clearly identifies

the derivative with respect to temperature of the strain-heating term

as the controlling quantity in the spokes





*left*:  $\partial(\text{strain-heat})/\partial T$  in  $10^{-12}\,\text{s}^{-1}$ ; *right*: basal temperature





#### The bad news

- the thermocoupled SIA really is subject to spokes: the coupled continuum equations are very sensitive to perturbation
- perturbations cannot be avoided when doing numerics!
- the continuum system might even be ill-posed in some geometry/temperature regimes (Hindmarsh 2006)
- *prediction*: the full thermocoupled Stokes' equations also have this kind of sensitivity to perturbation





## Outline

The context

The problem

The new tools, and how to use them

The problem again, but in better focus

The future





- codes will be massive and parallel and coupled to other climate systems and really confusing: include verification in ice sheet codes when possible!
- a grad student is not a numerical analyst: build real teams!





- codes will be massive and parallel and coupled to other climate systems and really confusing: include verification in ice sheet codes when possible!
- a grad student is not a numerical analyst: build real teams!
- numerical schemes for full Stokes' equations will really need verification
- shallow models will remain important in era of full Stokes' models





- codes will be massive and parallel and coupled to other climate systems and really confusing: include verification in ice sheet codes when possible!
- a grad student is not a numerical analyst: build real teams!
- numerical schemes for full Stokes' equations will really need verification
- shallow models will remain important in era of full Stokes' models
- WAIS 2006 shows ice flow theory is way behind data: recruit disgruntled string theorists to ice flow physics?!





- codes will be massive and parallel and coupled to other climate systems and really confusing: include verification in ice sheet codes when possible!
- a grad student is not a numerical analyst: build real teams!
- numerical schemes for full Stokes' equations will really need verification
- shallow models will remain important in era of full Stokes' models
- WAIS 2006 shows ice flow theory is way behind data: recruit disgruntled string theorists to ice flow physics?!
- QUESTIONS?



The future